2-Octynoic Acid Inhibits Hepatitis C Virus Infection through Activation of AMP-Activated Protein Kinase
نویسندگان
چکیده
Many chronic hepatitis C virus (HCV)-infected patients with current therapy do not clear the virus. It is necessary to find novel treatments. The effect of 2-octynoic acid (2-OA) on HCV infection in human hepatocytes was examined. The mechanism of 2-OA antiviral activity was explored. Our data showed that 2-OA abrogated lipid accumulation in HCV replicon cells and virus-infected hepatocytes. It suppressed HCV RNA replication and infectious virus production with no cytotoxicity to the host cells. 2-OA did not affect hepatitis B virus replication in HepG2.2.15 cells derived from HepG2 cells transfected with full genome of HBV. Further study demonstrated that 2-OA activated AMP-activated protein kinase (AMPK) and inhibited acetyl-CoA carboxylase in viral-infected cells. Compound C, a specific inhibitor of AMPK, inhibited AMPK activity and reversed the reduction of intracellular lipid accumulation and the antiviral effect of 2-OA. Knockdown of AMPK expression by RNA interference abolished the activation of AMPK by 2-OA and blocked 2-OA antiviral activity. Interestingly, 2-OA induced interferon-stimulated genes (ISGs) and inhibited microRNA-122 (miR-122) expression in virus-infected hepatocytes. MiR-122 overexpression reversed the antiviral effect of 2-OA. Furthermore, knockdown of AMPK expression reversed both the induction of ISGs and suppression of miR-122 by 2-OA, implying that activated AMPK induces the intracellular innate response through the induction of ISGs and inhibiting miR-122 expression. 2-OA inhibits HCV infection through regulation of innate immune response by activated AMPK. These findings reveal a novel mechanism by which active AMPK inhibits HCV infection. 2-OA and its derivatives hold promise for novel drug development for chronic hepatitis C.
منابع مشابه
AMPK - a nutrient and energy sensor with roles in diabetes, cancer and viral infection
The AMP-activated protein kinase (AMPK) is a cellular energy sensor that is conserved throughout the eukaryotic domain. AMPK exists as complexes comprising catalytic a subunits and regulatory b and g subunits, which are activated >100-fold by phosphorylation of the a subunit at Thr-172 by upstream kinases. Binding of AMP to one site on the Y subunit causes 10-fold allosteric activation by AMP, ...
متن کاملEnhanced hepatitis C virus genome replication and lipid accumulation mediated by inhibition of AMP-activated protein kinase.
Hepatitis C virus (HCV) infection is associated with dysregulation of both lipid and glucose metabolism. As well as contributing to viral replication, these perturbations influence the pathogenesis associated with the virus, including steatosis, insulin resistance, and type 2 diabetes. AMP-activated protein kinase (AMPK) plays a key role in regulation of both lipid and glucose metabolism. We sh...
متن کاملHepatitis C virus core protein inhibits human T lymphocyte responses by a complement-dependent regulatory pathway.
Complement proteins are involved in early innate immune responses against pathogens and play a role in clearing circulating viral Ags from the blood of infected hosts. We have previously demonstrated that hepatitis C virus (HCV) core, the first protein to be expressed and circulating in the blood of infected individuals, inhibited human T cell proliferative response through interaction with the...
متن کاملActivation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression
Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...
متن کاملInterferon Resistance of Hepatitis C Virus Genotypes 1a/1b: Relationship to Structural E2 Gene Quasispecies Mutations
Hepatitis C virus (HCV) envelope glycoprotein-2 (E2) inhibits the interferon (IFN)–induced, double –stranded RNA activated protein kinase (PKR) via PKR eukaryotic initiation factor-2α phosphorylation homology domain (PePHD). Present study examined the genetic variability of the PePHD in patients receiving interferon therapy. The PePHD region from HCV genotype 1a/1b infected patients receiving I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013